Meeting Abstract
Mammalia are the only living members of the larger clade known as Synapsida, which has a fossil record spanning from 320mya to today. Despite the fact that much of the ecological diversity of mammals has been considered in light of limb morphology, the origin of broader synapsid limb diversity and its influence on ecological diversity has received less attention. Here we present shape analyses of the forelimbs of the multiple fossil synapsid radiations in comparison to a broad sample of extant Mammalia. Previous work by the authors has shown that shape broadly is not informative of specific locomotor ecomorphologies in earliest fossil Synapsida. Considering the broader scientific use of limb morphology in testing for fossil ecomorphologies, we sought to better understand at what juncture in synapsid evolutionary history do limb metrics begin to show utility in ecomorphological analyses. Shape data on humeri and ulnae elements from an extant sample representing known ecomorphologies provided the framework for a comparative study of extinct ecomorphologies, associated specifically with locomotion. We conducted linear and geometric morphometric comparisons between the extant sample and five taxonomic subsampled radiations moving crown-ward along the synapsid lineage. Taxonomic designations were the PermoCarboniferous “pelycosaurs”, both Permian and Triassic therapsids, “Non-mammaliaforme cynodonts”, and “Mammaliaformes”. Results show that many limb ecomorphological metrics commonly used are not effective designators until close to the origin of crown Mammalia, as late as the Jurassic. This brings into question the overall utility of using extant analogues to test for ecological signal in a given tetrapod group’s deepest fossil ancestors.