The physiological effects of exposures to elevated COsub2sub on freshwater unionid mussels


Meeting Abstract

118-5  Thursday, Jan. 7 11:15  The physiological effects of exposures to elevated CO2 on freshwater unionid mussels HANNAN, KD*; JEFFREY, JD; WRIGHT, A; HASLER, CT; SUSKI, CD; University of Illinois, Urbana-Champaign; University of Illinois, Urbana-Champaign; University of Illinois, Urbana-Champaign; University of Illinois, Urbana-Champaign; University of Illinois, Urbana-Champaign kelly.hannan3@gmail.com

The movement and spread of invasive fish species is a topic of recent concern. In the Midwestern US, Asian carp are an invader of particular concern due to the recent expansion of their populations. Gas barriers aimed at deterring fish movement, such as CO2, are gaining in popularity as areas of elevated CO2 have been shown to be effective at deterring fish movement. However, little research has investigated potential consequences of these barriers on non-target species, such as mussels. Freshwater mussels are one of the most imperiled animals worldwide, and have some of their highest diversity in North America, and zones of high CO2 have potential to impact these organisms. The goal of the current study was to quantify the impacts of short-term, chronic, and fluctuating exposures to elevated CO2, and subsequent recovery, on freshwater mussels. Hemolymph ions such as, Ca2+, Cl, Mg2+, and Na+ were measured along with hemolymph glucose, body condition indices, and metabolic rate. Results from these studies indicate that freshwater mussels experienced physiological disturbances related to acid base disturbance following CO2 exposure, but body condition is unaffected, and there is evidence of recovery following removal of the CO2 challenge. Results are further discussed in the context of how CO2 barriers may impact non-target organisms.

the Society for
Integrative &
Comparative
Biology