Animals in a Bacterial World: A New Imperative for the Life Sciences

Margaret McFall-Ngai

University of Wisconsin-Madison and California Institute of Technology

Anton van Leeuwenhoek – The Father of Microbiology [1632-1723]

October 9, 1676

Anton van Leeuwenhoek – The Father of Microbiology

[1632-1723]

October 9, 1676

1683 – DISCOVERED BACTERIA IN CHEEK SWAB 'ANIMICULES'

Two questions arose:

What are they?
 What are they doing?

FAST FORWARD ~300 years1977

Carl Woese (b. 1928)

FAST FORWARD ~300 years1977

Carl Woese (b. 1928)

PCR!!!!

Kary Mullis Science 1985

Heading to the '\$1' genome

Sequenced bacterial genomes

Heading to the '\$1' genome

Sequenced bacterial genomes

Cyrus Chothia (Nature, 1992) - predicted no more than 1,000 protein families

Pfam (Protein family database -Wellcome Trust Sanger Institute – est. 1998) --as of Nov. 2011 ~14,000 protein families; discovery rate of 2-3 new families/day

Lesson from these data:

THE VAST DIVERSITY OF THE BIOSPHERE IS IN THE MICROBIAL WORLD.

How will these new insights change biology?

How will these new insights change biology?

Catalysis Meeting:

"The origin and evolution animal-microbe interactions"

October 23-27, 2011

[One slice - focus was animal-bacteria]

Acknowledgments

National Evolutionary Synthesis Center (NESCent) Catalysis Meeting – Oct 23-27, 2011

Participants:

Thomas Bosch Cell biologist/symbiosis Christian Albrechts U, Kiel, Germany Digestive physiology/immunology **U** Wisconsin-Madison Hannah Carey **Evolution of development Bernie Degnan** U Queensland, Australia Tomislav Domazet-Loso Genomics Ruder Boskovic Institute, Croatia Cornell U Angela Douglas **Symbiosis Nicole Dubilier** Chemoautotrophy/oceanography Max Planck Inst, Bremen, Germany Gerard Eberl Lymphoid tissue development Pasteur Institute, Paris, France Tadashi Fukami Systems ecology Stanford U Scott Gilbert Ecology of development Swarthmore College Michael Hadfield Larval biology U Hawaii Ute Hentschel Sponge biology/microbiology U Wuerzburg, Germany Animal origins/genome evolution Nicole King UC Berkeley Staffan Kjelleberg Microbial ecology/biofilms U New South Wales, Australia Paleontology Andrew Knoll Harvard U Natacha Kremer **Evolution of symbiosis** U Wisconsin-Madison Immunology/mammalian-microbe Sarkis Mazmanian California Inst Technol **Bioinformatics** Jessica Metcalf U Colorado-Boulder Animal-bacterial associations Margaret McFall-Ngai U Wisconsin-Madison Ken Nealson Bacterial physiology/geomicrobiology U Southern California Ecology/evolution of interactions Naomi Pierce Harvard U John Rawls Host-microbe interactions in the gut UNC Chapel Hill Ann Reid American Academy of Microbiology Science policy Lateral gene transfer, organelles **U** Maine Mary Rumpho Edward Ruby Microbial metabolic pathways U Wisconsin-Madison Jon Sanders **Evolutionary biology/symbiosis** Harvard U **Diethard Tautz** Genomics Max Planck Inst, Plon, Germany Duke U Jennifer Wernegreen **Evolutionary biology**

Acknowledgments

National Evolutionary Synthesis Center (NESCent) Catalysis Meeting – Oct 23-27, 2011

Participants:

Thomas Bosch Cell biologist/symbiosis Christian Albrechts U, Kiel, Germany Digestive physiology/immunology **U** Wisconsin-Madison Hannah Carey **Evolution of development Bernie Degnan** U Queensland, Australia Tomislav Domazet-Loso Genomics Ruder Boskovic Institute, Croatia Cornell U Angela Douglas **Symbiosis** Nicole Dubilier Chemoautotrophy/oceanography Max Planck Inst, Bremen, Germany Gerard Eberl Lymphoid tissue development Pasteur Institute, Paris, France Tadashi Fukami Systems ecology Stanford U Scott Gilbert Ecology of development Swarthmore College Michael Hadfield Larval biology U Hawaii Sponge biology/microbiology U Wuerzburg, Germany Ute Hentschel Animal origins/genome evolution Nicole King UC Berkeley Staffan Kjelleberg Microbial ecology/biofilms U New South Wales, Australia Andrew Knoll Paleontology Harvard U Natacha Kremer **Evolution of symbiosis** U Wisconsin-Madison Immunology/mammalian-microbe Sarkis Mazmanian California Inst Technol **Bioinformatics** Jessica Metcalf U Colorado-Boulder Animal-bacterial associations → Margaret McFall-Ngai U Wisconsin-Madison Ken Nealson Bacterial physiology/geomicrobiology U Southern California Ecology/evolution of interactions Naomi Pierce Harvard U John Rawls Host-microbe interactions in the gut UNC Chapel Hill American Academy of Microbiology Ann Reid Science policy Lateral gene transfer, organelles **U** Maine Mary Rumpho Edward Ruby Microbial metabolic pathways U Wisconsin-Madison Jon Sanders **Evolutionary biology/symbiosis** Harvard U **Diethard Tautz** Genomics Max Planck Inst, Plon, Germany **Evolutionary biology** Duke U Jennifer Wernegreen

Five groups explored the effects of bacteria on animals and animals on bacteria in the following contexts:

*Group leader

[1 History/Context]

Two impediments to integration of microbiology into other areas of biology:

- technical
- conceptual

1680

1980

[1 History/Context]

Two impediments to integration of microbiology into other areas of biology:

- technical
- conceptual

Pathogenic Microbiology Robert Koch (1843-1910) and others

1980

Environmental Microbiology Sergei Winogradsky (1856 - 1953) and others

Animal biology

[1 History/Context]

Two impediments to integration of microbiology into other areas of biology:

- technical
- conceptual

1680

Pathogenic Microbiology Robert Koch (1843-1910) and others

1980

Environmental Microbiology Sergei Winogradsky (1856 - 1953) and others

Animal biology

[2 Ecology]

<u>Microbes</u>

Small (~0.2 - ~750 μm; aver 2 μm)
Short generation times (<10 min)</p>
Large population sizes
Propensity for horizontal
gene transfer (pangenome limitless)

Traits

[2 Ecology]

Microbes

Small (~0.2 - ~750 μm; aver 2 μm)
Short generation times (<10 min)</p>
Large population sizes
Propensity for horizontal
gene transfer (pangenome limitless)

<u>Animals</u>

Traits

Large (80 µm to 30 m; aver mm-cm) Long generation times (days – decades) Small population sizes Propensity against horizontal gene transfer

[2 Ecology – Nested Ecosystems]

<u>Microbes</u>

Small (~0.2 - ~750 μm; aver 2 μm)
Short generation times (<10 min)</p>
Large population sizes
Propensity for horizontal
gene transfer (pangenome limitless)

Traits

<u>Animals</u>

Large (80 µm to 30 m; aver mm-cm) Long generation times (days – decades) Small population sizes Propensity against horizontal gene transfer

By partnering with one another, animals and bacteria increase their scope.

Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems

Fukami et al. (2006) Ecology Letters 9:1299-1307

<u>Compared offshore islands of New Zealand</u> <u>- rat-free vs. rat-invaded</u>

Measured:

vegetation density seabird abundance litter invertebrates soil invertebrates and microbiota soil nutrients and chemistry

Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems

Fukami et al. (2006) Ecology Letters 9:1299-1307

<u>Compared offshore islands of New Zealand</u> <u>- rat-free vs. rat-invaded</u>

Measured:

vegetation density seabird abundance litter invertebrates soil invertebrates and microbiota soil nutrients and chemistry

Seabird abundance down 24-fold on rat-invaded islands

Disrupting sea-land nutrient transport (guano deposition on the island)

[2 Ecology – Nested Ecosystems]

Cascading effects

[2 Ecology – Nested Ecosystems]

Cascading effects

Soil on rat-invaded islands: nutrients – down 20-60% pH up ~2 units (4.8 to 6.6)

Symbioses – classic nested ecosystems

Dominguez-Bello (2010) Proc Natl Acad Sci USA 107: 11971-5 & (2011) Gastroenterology 140:1713-9.

When and how did these complex ecosystems evolve?

Changes in atmospheric oxygen levels correlate with major radiations

[3 Origins]

Any evidence for bacteria participating in the evolution of multicellularity?

[3 Origins]

Fairclough, Dayel and King (2010) Curr Biol 20:R875-6.

[3 Origins]

Any evidence for bacteria driving major milestones in animal evolution?

Is there a genomic signature?

Perhaps you aren't the person you think you are.

The 'Ecosystem'

Victoria Orphan, Prof. Caltech

Host:bacterial partners -

1:10 cell number (10¹³ host cells/10¹⁴ bacterial cells)
1:1 gene number (30,000 in 10¹³/3,000 in 10¹⁴)
1:200 gene diversity

Is there a genomic signature?

Perhaps you aren't the person you think you are.

The 'Ecosystem'

Victoria Orphan, Prof. Caltech

Host:bacterial partners -

1:10 cell number (10¹³ host cells/10¹⁴ bacterial cells)
1:1 gene number (30,000 in 10¹³/3,000 in 10¹⁴)
1:200 gene diversity

[4 Genomics]

The evolutionary trajectory to humans in 19 steps -

<u>Question</u>: At which steps in evolution did the human genes evolve?

<u>Method</u>: All available proteins sequences were used to create a phylographic framework, within which the positions of human protein sequences (~23, 000) were identified.

(Domazet-Loso and Tautz, 2008)

(Domazet-Loso and Tautz, 2008)

Effects on bacterial gene evolution:

Examples:

- 1. Extreme genome reduction in the intracellular symbionts of insects
- 2. Diversification of metabolic pathways in response to host niche

[5 Development]

Bacteria influence animal development at many levels, egg to mature adult.

Many, if not most marine invertebrate larvae that settle on hard substrates require bacterial biofilms for settlement and/or metamorphosis.

Hadfield (2011) Annu Rev Mar Sci 3:453.

IDENTIFYING THE MECHANISM

Hadfield (Ying Huang) and Callahan lab:

Identified a bacterial species, *Pseudoalteromonas luteoviolacea*, that is a strong inducer of metamorphosis.

Through transposon mutagenesis, they identified mutants defective in induction of larval settlement.

Obtained full genome sequence of *P. luteoviolacea*.

Defined genes essential for induction of larval settlement (4 genes critical; e.g., adhesins, biofilm formation, type VI secretion).

[5 Development]

Symbiont induction of host tissue development

- evolutionarily conserved processes

Euprymna scolopes -Vibrio fischeri light organ symbiosis

MAMPs (peptidoglycan monomer and LPS) from the gram-negative symbiont induces epithelial development. [Koropatrick et al. (2004) *Science*]

[5 Development]

Symbiont induction of host tissue development

- evolutionarily conserved processes

Euprymna scolopes -Vibrio fischeri light organ symbiosis

MAMPs (peptidoglycan monomer and LPS) from the gram-negative symbiont induces epithelial development. [Koropatrick et al. (2004) *Science*]

after MAMPs inductive signal delivered at 12 h

Taming of the MAMPs

[Troll et al. (2010) Env Microbiol] [Leulier - drosophila] [Rader et al. (In prep)] [Guillemin - zebrafish]

Mus musculus - gut consortial symbiosis

MAMPs (peptidoglycan monomer) from the gram-negative component of the consortium
induces GALT development.
[Bouskra et al. (2008) Nature]

Taming of the MAMPs -

modulation of MAMPs/PRR activity

See Eberl and Boneca (2010) Curr Opin Immunol

Until recently – no mechanism for bacterial communication known.

<u>Quorum sensing</u> – bacterial pheromones, both intra- and interspecific; bacteria respond when at high density.

[6 Communication]

The hormones epinephrine and norepinephrine control:

- intestinal motility
- ion channel activity
- mucosal immune system
- have a molecular structure very similar to a bacterial quorum-sensing molecule.

Courtesy of V Sperandio, UT Southwestern

Bacterial adrenergic receptor: QseC

 QseC is an inner membrane bacterial adrenergic receptor (Histidine kinase). QseC responds to the bacterial signal AI-3 <u>and</u> to the host signals epinephrine and norepinephrine

Courtesy of V Sperandio, UT Southwestern

Clarke et al. PNAS 2006

Mammalian microbiota have profound effects on host biology:

METABOLOMICS

Biologists are discovering the 'mammalian-microbial co-metabolome'

Analysis of the small biomolecules in the body fluids (blood, sweat, tears, urine)

METABOLOMICS

Biologists are discovering the 'mammalian-microbial co-metabolome'

Analysis of the small biomolecules in the body fluids (blood, sweat, tears, urine)

A large proportion of a mammal's metabolic signature is determined by the activity of the resident microbiota.

Every cell in the body of an animal is affected.

Mammalian microbiota have profound effects on host biology:

What about other animals?

New technology has revealed that animals are deeply imbedded in the microbial world, and all aspects of an

animal's biology are likely to be affected.

Lynn Margulis 1938-2011

The Challenge – Intellectual Silos

The structure of:

- departments and research institutes at universities

- professional societies

- funding agencies

Be bold - Make bridges with microbiologists. [currently mainly a biomedical focus]

Be bold - Make bridges with microbiologists. [currently mainly a biomedical focus]

Incorporate much, much more microbiology into introductory courses. [currently only a few lectures]

Be bold - Make bridges with microbiologists. [currently mainly a biomedical focus]

Incorporate much, much more microbiology into introductory courses. [currently only a few lectures]

Societies, like SICB, should make a home for this arena.

[currently, no home]

Be bold - Make bridges with microbiologists. [currently mainly a biomedical focus]

Incorporate much, much more microbiology into introductory courses. [currently only a few lectures]

Societies, like SICB, should make a home for this arena.

[currently, no home]

Challenge the funding agencies to support the developing frontiers. [not enough for such a vast horizon]

Thanks for listening to our story!

NESCent Catalysis Mtg. Group