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Anton van Leeuwenhoek — The Father of Microbiology
[1632-1723]

October 9, 1676
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Anton van Leeuwenhoek — The Father of Microbiology
[1632-1723]

October 9, 1676

1683 — DISCOVERED BACTERIA IN CHEEK SWAB
‘ANIMICULES’

>

Leeuwenhoek’s instrument

focus
.y knob

Two questions arose:

sample 1) What are they?

£ . translator

2) What are they doing?

sampk X
holder







FAST FORWARD ~300 years .......cccceevvveennn...... 1977

Carl Woese (b. 1928)

16S rRNA

Phylogenetic Tree of Life
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Microsporidia
Thermotoga
Diplomonads
Aquifex

Woese et al. (1990) PNAS 87 (12): 4576-9.
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Heading to the ‘S1’ genome

Sequenced bacterial genomes
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Cyrus Chothia (Nature, 1992) - predicted no more than 1,000 protein families

Pfam (Protein family database -Wellcome Trust Sanger Institute — est. 1998)
--as of Nov. 2011 ~14,000 protein families; discovery rate of 2-3 new families/day

Total sequences



Lesson from these data:

THE VAST DIVERSITY OF THE BIOSPHERE
IS IN THE MICROBIAL WORLD.



How will these new insights change biology?




How will these new insights change biology?

Catalysis Meeting:

NESCent

National Evolutionary Synthesis Center

"The origin and evolution animal-microbe interactions”

October 23-27, 2011

[One slice - focus was animal-bacteria]
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Five groups explored the effects of bacteria on animals
and animals on bacteria in the following contexts:
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[1 History/Context]

Two impediments to integration of microbiology into other areas of biology:
- technical
- conceptual

Pathogenic Microbiology Environmental Microbiology

Robert Koch (1843-1910) Sergei Winogradsky (1856 - 1953)
and others and others

V n

Animal biology
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[2 Ecology]

Traits

Microbes

Small (~0.2 - ~750 um; aver 2 um)
Short generation times (<10 min)
Large population sizes
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gene transfer (pangenome limitless)
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[2 Ecology — Nested Ecosystems]

Traits

Microbes

Small (~0.2 - ~750 um; aver 2 pm)
Short generation times (<10 min)
Large population sizes
Propensity for horizontal

gene transfer (pangenome limitless)

Animals

Large (80 um to 30 m; aver mm-cm)
Long generation times (days — decades)
Small population sizes

Propensity against horizontal
gene transfer

By partnering with one another, animals and bacteria increase their scope.



[2 Ecology — Nested Ecosystems] Examining all components and levels of an ecosystem

Above- and below-ground impacts of introduced predators
in seabird-dominated island ecosystems
Fukami et al. (2006) Ecology Letters 9:1299-1307

Compared offshore islands of New Zealand
- rat-free vs. rat-invaded

Measured:

vegetation density

seabird abundance

litter invertebrates

soil invertebrates and microbiota
soil nutrients and chemistry




[2 Ecology — Nested Ecosystems] Examining all components and levels of an ecosystem

Above- and below-ground impacts of introduced predators
in seabird-dominated island ecosystems
Fukami et al. (2006) Ecology Letters 9:1299-1307

Compared offshore islands of New Zealand
- rat-free vs. rat-invaded

Measured:

vegetation density

seabird abundance

litter invertebrates

soil invertebrates and microbiota
soil nutrients and chemistry

Seabird abundance down 24-fold
on rat-invaded islands

Disrupting sea-land nutrient transport
(guano deposition on the island)




[2 Ecology — Nested Ecosystems]
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[2 Ecology — Nested Ecosystems]
Cascading effects
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Soil on rat-invaded islands:
nutrients — down 20-60%

pH up ~2 units (4.8 to 6.6)




[2 Ecology — Nested Ecosystems]

Symbioses — classic nested ecosystems

@//9

Newborn

Y\

Early
childhood -

Elderly

Adult -

—~

>

>

£

* Initial gut bacteria (founder
species) depends upon
delivery mode

* Lactobacillus,

« Vertical
inheritance
from mother

Vaginal delivery:

Prevotella spp.

C-section:

« Staphylococcus,
Corynebaterium,
Propionibacterium
spp-

+ Higher
susceptibility to
certain pathogens

+ Higher risk of
atopic diseases

£

* New strains (less certain
in origin) outcompete old
ones

* Rapid increase in
diversity

+ Early microbiota
development = high
instability

+ Shifts in response to diet,
illness

* Highly distinct,

* Microbial community

Vg

differentiated microbiota

may continue to change,
but at a slower rate than
in childhood

* Substantially different

V

gut communities than in
younger adults

Dominguez-Bello (2010) Proc Natl Acad Sci USA 107: 11971-5 & (2011) Gastroenterology 140:1713-9.
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[3 Origins]

When and how did these complex ecosystems evolve?

Changes in atmospheric oxygen levels correlate with major radiations

100
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log % modern
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[3 Origins]

Any evidence for bacteria participating in the evolution
of multicellularity?
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[3 Origins]

Human (Hsap)
Ascidian (Cint)
Drosophila (Dmel)

Cnidarian (Nvec)

Y
BOZBISN

Calcareous sponge

Hexactinellid sponge

Demosponge J

M. brevicollis (Mbre)

Zygomycete (Rory)

Basidiomycete (Ccin)

1Bun4

Ascomycete (Ncra)

Hemiascomycete (Scer)

Arabidopsis (Atha)

Fairclough, Dayel and King (2010) Curr Biol 20:R875-6.



[3 Origins]

Any evidence for bacteria driving major milestones in
animal evolution?
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[4 Genomics]

Is there a genomic signature?

Perhaps you aren’t the person you think you are.

The ‘Ecosystem’

Victoria Orphan, Prof. Caltech
Host:bacterial partners -

1:10 cell number (103 host cells/104 bacterial cells)
1:1 gene number (30,000 in 1013/3,000 in 104)
1:200 gene diversity



[4 Genomics]

Is there a genomic signature?

Perhaps you aren’t the person you think you are.

The ‘Ecosystem’

) ( = | o

Victoria Orphan, Prof. Caltech
Host:bacterial partners -

1:10 cell number (10*3 host cells/10'* bacterial cells)
1:1 gene number (30,000 in 1013/3,000 in 104)
1:200 gene diversity

Origin of host genes

- 37% Bacterial
I:l 28% Eukaryotic
- 16% Animal
- 13% Vertebrate
I:l 6% Primate




[4 Genomics]
The evolutionary trajectory to humans in 19 steps -

Question: At which steps in evolution did the human genes evolve?

Method: All available proteins sequences were used to create a phylographic framework, within which the
positions of human protein sequences (~23, 000) were identified.

Primates

Euarchonloglires\
Boreoeutheria., é Glires (Lagomorpha, Rodentia), Scadentia

Eutheria \% Laurasiatheria (cow, dog)
Mammalia
\+ Afrotheria (elephant, ...), Xenarthra (armadillo)
Marsupialia (opossum), Prothotheria (platypus)
Sauropsida (chicken, Anolis)

Amphibia (Xenopus)

Euteleostomi (Osleichmyes)\

Craniata (Vertebrala)\ Actinopterygii, other Sarcopterygii

Chordala., Cyclostomata (lampreys, hagfishes) (EST, Trace) Chondrichthyes (elephantfish) (EST, Trace)
Olfactores (Craniata + Urochordata), Urochordata

Deuteroslomla%

Cephalochordata

Bilateria., Echinodermata (sea urchin)
Eumelazoa\% Protostomia, Aceolmorpha

Cnidaria

Metazoa\
Holozoa (Metazoa + A|Iies)\+ Porifera (EST, Trace)

Choanoflagellida

Opisthokonla\
Eukaryola\% Fungi

Cellular org., Other eukaryotes
Archea, Bacteria

(Domazet-Loso and Tautz, 2008)



[4 Genomics]

Origin of Human Genes/Genes Associated with Human Genetic Disease

(1,760/22,937)
10,000
Animalf Genome {h
\
e Disease {* + + {*
1,000 A<S
N\
\
- Primates
Q
o]
g Jawed
2 Vertebrates
100
Q
[ o
Q
()
10
1 O—0 -
i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Phylostrata

(Domazet-Loso and Tautz, 2008)



[4 Genomics]

ANIMALS <—> BACTERIA

Effects on bacterial gene evolution:

Examples:

1.Extreme genome reduction in the
intracellular symbionts of insects

2. Diversification of metabolic pathways
in response to host niche
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[5 Development]

Bacteria influence animal development at many levels,
egg to mature adult.

> Sl S
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symbionts fertilization
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[5 Development]

Many, if not most marine invertebrate larvae that settle on hard substrates
require bacterial biofilms for settlement and/or metamorphosis.

Larvae Choose Surfaces with Higher Bacterial Density

Settlement counted at 24 hr (mean of four experiments)
200 80

Adjusted Settlement 70
—0— Bacterial Density

60
50

40

Hydroides elegans 30

Bacterial density
(small rods / 425um?)

20

Adjusted Settlement

10
0

2 3
Days of biofilming

Hadfield (2011) Annu Rev Mar Sci 3:453.



[5 Development]

Bacteria under post-settlement larvae

IDENTIFYING THE MECHANISM

Hadfield (Ying Huang) and Callahan lab:

|dentified a bacterial species, Pseudoalteromonas luteoviolacea,
that is a strong inducer of metamorphosis.

Through transposon mutagenesis, they identified mutants
defective in induction of larval settlement.

Obtained full genome sequence of P. luteoviolacea.

Defined genes essential for induction of larval settlement
(4 genes critical; e.g., adhesins, biofilm formation, type VI secretion).

Huang, Callahan & Hadfield (in press) Scient Rep



[5 Development]

Svymbiont induction of host tissue development
- evolutionarily conserved processes

Euprymna scolopes -Vibrio
fischeri light organ symbiosis

MAMPs (peptidoglycan monomer and LPS) from
the gram-negative symbiont induces epithelial
development. [Koropatrick et al. (2004) Science]

after MAMPs inductive signal
delivered at 12 h

Taming of the MAMPs

PGN Xnom‘e{ \ )(5

}Troll et al. (2010) Env Microbiol] }Rader etal. (In prep)}
Leulier - drosophila] Guillemin - zebrafish




[5 Development]

Svymbiont induction of host tissue development

- evolutionarily conserved processes

Euprymna scolopes -Vibrio
fischeri light organ symbiosis

MAMPs (peptidoglycan monomer and LPS) from
the gram-negative symbiont induces epithelial
development. [Koropatrick et al. (2004) Science]

after MAMPs inductive signal
delivered at 12 h

Taming of the MAMPs

PGN Xnom‘e{ \ )(5

}Troll et al. (2010) Env Microbiol] }Rader etal. (In prep)}
Leulier - drosophila] Guillemin - zebrafish

Alkaline phosphatase

Mus musculus - gut consortial

symbiosis

MAMPs (peptidoglycan monomer) from the

\

gram-negative component of the consortium
induces GALT development.
[Bouskra et al. (2008) Nature]

Taming of the MAMPs -
modulation of MAMPs/PRR activity

See Eberl and Boneca (2010)
Curr Opin Immunol
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[6 Communication]

Until recently —
no mechanism for bacterial communication
known.

Quorum sensing — bacterial pheromones, both
intra- and interspecific; bacteria respond when at
high density.




[6 Communication]

The hormones epinephrine and norepinephrine control:
- intestinal motility
- ion channel activity
- mucosal immune system

- have a molecular structure very similar to a bacterial
quorum-sensing molecule.

Epinephrine
Norepinephrine Resident flora  Bacterial quorum sensing molecule

Courtesy of V Sperandio, UT Southwestern Clarke et al. PNAS 2006




[6 Communication]

Bacterial adrenergic receptor: QseC

e QseCis aninner membrane bacterial adrenergic
receptor (Histidine kinase). QseC responds to the
bacterial signal Al-3 and to the host signals epinephrine
and norepinephrine

Epi/NE
*. 1L A-3
QseC 2

0000000000008 ‘ii 0000000000000,
]

P o

|

Virulence gene expression

Courtesy of V Sperandio, UT Southwestern Clarke et al. PNAS 2006




[6 Communication]

Mammalian microbiota have profound effects on host biology:

@ Immune /

AMP TMA
LPS
PSA tripeptides
PGN \
SCFA :
quorum signals ¥
PGN
SCFA
Neuroendocrine
epinephrine -

behavior

bile-acid "f: B
derivatives 3
PC%
g nitric
, ox:lde

other systems/tissue
(excretory, musculoskeletal,
integumentary, adipose, efc.)




[6 Communication]

METABOLOMICS

]

SWEAT&
OOV
oV gy

h 3 Biologists are discovering
the ‘mammalian-microbial co-metabolome’

Analysis of the small biomolecules in the
body fluids (blood, sweat, tears, urine)




[6 Communication]

METABOLOMICS

=
oD.SWEATg& 7,
&° Eqy, "

k 3 Biologists are discovering
' the ‘mammalian-microbial co-metabolome’

Analysis of the small biomolecules in the
body fluids (blood, sweat, tears, urine)

A large proportion of a mammal’s
metabolic signature is determined by

Every cell in the body of an animal is
affected.




[6 Communication]

Mammalian microbiota have profound effects on host biology:

Y

\MP
LPS

PSA

PGN

quorum signals

bile-acid
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other systems/tissue
(excretory, musculoskeletal,
integumentary, adipose, efc.)

i) |

behavior

What about other animals?
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“New technology has revealed that animals are deeply
imbedded in the microbial world, and all aspects of an




2011

Lynn Margulis 1938




The Challenge — Intellectual Silos

The structure of:

- departments and research institutes at universities
- professional societies

- funding agencies
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[currently mainly a biomedical focus]
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Beginnings:

Be bold - Make bridges with microbiologists.
[currently mainly a biomedical focus]

Incorporate much, much more microbiology into
introductory courses.
[currently only a few lectures]

Societies, like SICB, should make a home for this
arena.
[currently, no home]

Challenge the funding agencies to support the
developing frontiers.
[not enough for such a vast horizon]



Thanks for listening to our story!

NESCent Catalysis Mtg. Group




