SICB Division of Comparative Biomechanics (DCB)

DCB Researchers Database Entry

Henry Astley

Comparative Biomechanics and Biomimetic Robotics
My research focuses on the biomechanics of animal locomotion, at the intersection between biology and physics. In order to move through their environment, animals must use physiological processes to generate force, transmit this force via the musculoskeletal system and morphology, and control it via the nervous system, all while navigating through sometimes mechanically complex and heterogeneous environments. I use a variety of systems to study these principles, including snakes, frogs, and early tetrapods. Snakes are capable to traversing a tremendous range of environments with a greatly simplified body plan, dramatically changing their interactions with the environment using different control strategies and gaits, such as sidewinding, lateral undulations and concertina locomotion. Frogs use elastic tendons in a catapult mechanisms, allowing them to generate jump power outputs far beyond the limits of muscle power, showing the potential for musculo-skeletal morphology to dramatically alter function. And early tetrapods moved through a novel and challenging mechanical environment with primitive limbs and limited control, posing an intriguing biomechanical puzzle. I study these and other systems using a variety of techniques on the biological systems (e.g. motion capture, high-speed video, inverse dynamics, in vitro muscle testing), along with construction of biomimetic robots and robophysical models, which allow us to command different control schemes and experimentally manipulate morphology in a controlled, repeatable manner.